
Chloromedia: A Standard Representation of Data
for Media-Based Applications

http://brandonio21.com/chloromedia

August 18, 2016

Version 1.0

BACKGROUND
On devices, especially mobile devices, there are many apps which need to retrieve the media on a user’s

device. Each one of these apps, however, has its own implementation of reading the filesystem in order

to aggregate all this media. Chloromedia aims to provide an insertable datalayer for these applications.

USE CASE
As an example, take LeafPic. LeafPic is an open-source media gallery app for Android devices. In LeafPic,

the author painstakingly creates his own model to represent media on the device. Keeping his end-goal in

mind, however, he creates a hectic data model which is intertwined with the gallery itself. Further

extensions are near impossible. Further, LeafPic’s model differs from all other gallery app models.

GOALS
Chloromedia aims to provide a clean, intuitive, and optimized solution to the “media application data

layer” problem. It will accomplish these goals in the following way:

Clean Follow modern Object Oriented Principles and Clean Coding principles

Intuitive Have a minimalistic API with proper naming. Functions should be very small.

Optimized By default, the API is load-on-demand and asynchronous.

NON-GOALS
Chloromedia aims to provide a clean media data-layer. It does not aim to manage the entire stack (it will

not be a media gallery itself). Nor does Chloromedia provide a data-layer for anything beyond media. In

short, Chloromedia will provide ways to access media and manipulate media without having to know

about the implementation details of various media stores.

THE API - OVERVIEW

MediaProvider
The media provider will, in essence, provide the media. It will connect to a source of media (a local

filestore, a remote fileshare, etc.) and allow the user to retrieve media. Since the MediaProvider is the

sole connection to the source of media, it will also house the functionality to interact with the media in

file-related ways.

http://brandonio21.com/chloromedia

Keep in mind that as far as Chloromedia is concerned, media are not files. However, media do have the

ability to be renamed, moved, and deleted.

Album
An album is a collection of media. Much like a photo album is used to store and organize photos, a

Chloromedia album is used to keep track of and organize media. Of course, an album may also contain

another album. Albums are not actionable – that is to say that they are simply a collection of other objects

that may be sorted. One should not expect to “display” an album to a user. However, an album does have

contents that may be displayed. An album may also have an image to represent itself.

Media
Media are the core of the API. They are videos, images, gifs, sound clips, etc. They are always contained

within an album and may be acted upon. Each piece of media also has a type (video, image, gif, etc.). All

media of the same type shall be displayed in the same manner.

THE API – UML

TECHNICAL SPECIFICATIONS

MediaProvider
All MediaProvider calls should be asynchronous. Thus, calls that are relayed to the ExclusionTable must

also be asynchronous. All methods should return an AsyncTask which the user can then choose to execute

at a later time. Further, the user may be able to display a loading spinner.

All AsyncTask methods of the Media Provider should update progress in terms of the items it is loading.

For instance, getSubItems() should return, as its progress, a ProviderItem when it finishes loading. This

will allow the user to more dynamically populate their user-interface.

getRootAlbum()
Shall first create a new Album object (the Root album). Shall then scan the top level of the file system

asynchronously. When a folder is encountered, its second level is scanned until a valid media file is found.

Upon which, the folder is added to the Root album and its cover image is set from the media file found.

If media files are found on the top level, they are also added to the Root album.

If no media files are found on the second level, repeated levels can be scanned for media files in a breadth-

first search manner.

Note that files are determined to be media by their file extension, so no reading of file contents is

necessary.

Finally, also note that all items should be checked against the exclusion table. If they are excluded

(ExclusionTable.isExcluded shall be an O(1) operation), they shall not be added to the root album.

The root album should then be returned.

getSubItems(Album)
Shall use the same algorithm described in getRootAlbum() to find sub-items for the provided folder. Note

that traversing to the provided album’s location must be O(1). Therefore, if the filestore being used

requires the ProviderItem to hold additional metadata, a custom ProviderItemMetadata implementation

must be created.

moveItem(ProviderItem, Album)
Moves the provider item provided by the first argument into the album provided by the second argument.

Do note that the second argument may be the Root album (which would move the item to the top level).

This shall also move all of the children of the item if it is an album. All metadata shall be updated. Note

that for all “file” operations, the parent of the specified item may need to also be altered.

deleteItem(ProviderItem)
Removes the specified item from the filesystem. If the specified item is an album, all children shall also be

removed. Note that for all “file” operations, the parent of the specified item may need to also be altered.

renameItem(ProviderItem, String)
Renames the specified file on a filesystem level. If the specified file is an album, all children will be moved

into the newly named Album. Note that for all “file” operations, the parent of the specified item may need

to also be altered.

excludeItem(ProviderItem)
Shall add the item to the exclusion table, preventing it from being loaded. The parent of this object should

be immediately notified.

unexcludeItem(ProviderItem)
Shall remove the item from the exclusion table, allowing it to be loaded. The parent of this object should

be immediately notified.

ProviderItem
A ProviderItem is an item that was retrieved by the MediaProvider. A ProviderItem shall not be created

and shall only be supplied by the MediaProvider. The ProviderItem holds a small amount of data that aids

with its display as well as delegate methods for MediaProvider operations. The ProviderItem also contains

ProviderItemMetadata, which allows the MediaProvider to better operate on it.

All ProviderItem operations should be O(1) (except those that delegate to other objects).

getPreviewImage()
Returns a Bitmap which corresponds to the image displayed as a preview. This should be an O(1) operation

that should not need to consult the MediaProvider for more data.

getDate()
An O(1) operation to get the date representation of the item. This date is not strictly defined, but must be

useful to the user. In most cases, this is the date of creation of the media.

getName()
Returns a display-friendly name which corresponds to the name displayed. This should be an O(1)

operation that should not need to consult the MediaProvider for more data.

In most cases, the name returned can simply be the name provided by the MediaProvider. This name

must be updated when the user renames the item.

getMetadata<T>(String)
Each ProviderItem should hold a map of {key: MetaData}, where the MetaData extends the

ProviderItemMetadata class. This metadata should be used by the MediaProvider in order to perform its

operations and should not be exposed to the user.

As an example, a java “File” object may be used as metadata for media loaded from the filesystem.

ProviderItemMetadata
The ProviderItemMetadata serves as a grouping of Metadata useful for a single type of MediaProvider.

This object can be retrieved from a ProviderItem in order to perform MediaProvider operations on it.

Album : ProviderItem
The album is a collection of ProviderItems that also maintains some state. Along with containing the

functionality of a ProviderItem, the album also allows the user to manipulate the state.

setCoverItem(ProviderItem)
Changes the preview image of the album to be the preview image of the provided item.

getChildren()
An asynchronous method that returns the children of the album. Note that the children of the album may

not yet be loaded (Chloromedia defines a lazy-loaded interface).

If the media has not yet been loaded, the MediaProvider should be consulted. If the media has been

loaded, it should simply be returned in an O(1) fashion.

getChildrenFromProvider()
Refreshes the list of children using the MediaProvider. This method is called by getChildren() if the

contents have not yet been loaded, but may also be called by the end-user. (Imagine a pull-to-refresh).

This method should simply invoke the MediaProvider’s getSubItems().

sort(SortMode, SortDirection)
Sorts the contents of the album and returns the contents. This should be done asynchronously. All

subsequent calls to getChildren() and getChildrenFromProvider() will return data sorted in this fashion.

SortMode = {NAME, TYPE, DATE}; SortDirection = {ASCENDING, DESCENDING}

Media : ProviderItem
Media is an item provided by the MediaProvider that can also be directly viewed. A Media object has both

a Preview image and a full representation that shall be loaded into its own “View”.

getContentView()
Delegates to the getView() of its type.

MediaType
Since each type of media may be displayed differently, but all instances of a type of media should be

displayed in the same fashion, the MediaType defines how a certain type of media should be displayed

getView(Media)
Returns a new view populated with operations pertaining to the Media. The MediaProvider may be

consulted to read the entirety of the media.

The view must have operations pertaining to the media. For instance, if the Media is a Video, the View

must contain a play button. If the media is an image, the View should be zoomable.

